Search results for "Long-range interaction"

showing 10 items of 24 documents

Non-local finite element method for the analysis of elastic continuum with long-range central interactions.

2009

In this paper the Finite Element Method (FEM) for the mechanically-based non-local elastic continuum model is proposed. In such a model non-adjacent elements are considered mutually interacting by means of central body forces that are monotonically decreasing with their interdistance and proportional to the product of the interacting volume elements. The resulting governing equation is an integro-differential one and for such a model both kinematical and mechanical boundary conditions are exactly coincident with the classical boundary conditions of the continuum mechanics. The solution of the integro-differential problem is framed in the paper by the finite element method. Finally, the solu…

Non-local elasticityfinite element methodlong-range interactionSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Non-local stiffness and damping models for shear-deformable beams

2013

This paper presents the dynamics of a non-local Timoshenko beam. The key assumption involves modeling non-local effects as long-range volume forces and moments mutually exerted by non-adjacent beam segments, that contribute to the equilibrium of any beam segment along with the classical local stress resultants. Elastic and viscous long-range volume forces/moments are endowed in the model. They are built as linearly depending on the product of the volumes of the interacting beam segments and on generalized measures of their relative motion, based on the pure deformation modes of the beam. Attenuation functions governing the space decay of the non-local effects are introduced. Numerical resul…

PhysicsTimoshenko beam theoryNon-local elasticityMechanical EngineeringAttenuationRelative motionGeneral Physics and AstronomyStiffnessMechanicsNon localTimoshenko beamNon-local dampingLong-range interactionClassical mechanicsShear (geology)Mechanics of MaterialsStress resultantsmedicineGeneral Materials Sciencemedicine.symptomSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)European Journal of Mechanics - A/Solids
researchProduct

Recent Advances of Spin Crossover Research

2004

Thermal spin transition (spin crossover), one of the most fascinating dynamic electronic structure phenomena occurring in coordination compounds of third row transition metal ions, mostly of iron(II), iron(III) and cobalt(II) with critical ligand field strengths competing with the spin pairing energy, has attracted increasing attention by many research groups. One of the reasons is the promising potential for practical applications. In this chapter we intend to cover essential recent work, primarily accomplished within the European research network on "Thermal and Optical Switching of Molecular Spin States (TOSS)". New spin crossover compounds and their thermal spin transition behaviour, al…

NUCLEAR INELASTIC-SCATTERINGLigand field theorySpin statescooperativitySpin transitionElectronic structurephysical propertiespressurespin crossoverSpin crossoverINTRAMOLECULAR MAGNETIC INTERACTIONlight effectsIRON(II) COMPLEXESSpin-½TRANSITION MOLECULAR MATERIALSLONG-RANGE INTERACTIONCondensed matter physicsChemistrySpin engineeringISING-LIKE SYSTEMSPairingPHOTOINDUCED PHASE-TRANSITIONSTATE TRAPPING LIESSTCondensed Matter::Strongly Correlated ElectronsX-RAY-STRUCTURELIGHT-INDUCED BISTABILITY
researchProduct

Elastic waves propagation in 1D fractional non-local continuum

2008

Aim of this paper is the study of waves propagation in a fractional, non-local 1D elastic continuum. The non-local effects are modeled introducing long-range central body interactions applied to the centroids of the infinitesimal volume elements of the continuum. These non-local interactions are proportional to a proper attenuation function and to the relative displacements between non-adjacent elements. It is shown that, assuming a power-law attenuation function, the governing equation of the elastic waves in the unbounded domain, is ruled by a Marchaud-type fractional differential equation. Wave propagation in bounded domain instead involves only the integral part of the Marchaud fraction…

PhysicsNon-local elasticityContinuum mechanicsWave propagationDifferential equationMathematical analysisCondensed Matter PhysicsFractional calculuDispersion of elastic waves; Lattice models; Long-range interactions; Non-local elasticity; Fractional calculus; Fractional power lawPower lawAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsFractional calculusLattice modelLove waveLong-range interactionIngenieurwissenschaftenDispersion of elastic waveBounded functionddc:620Settore ICAR/08 - Scienza Delle CostruzioniLongitudinal waveFractional power law
researchProduct

MECHANICAL RESPONSE OF BERNULLI EULER BEAMS ON FRACTIONAL ORDER ELASTIC FOUNDATION

2014

Long-range interactions non-local foundations elastic beams fractional calculusSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Fractional differential calculus for 3D mechanically based non-local elasticity

2011

This paper aims to formulate the three-dimensional (3D) problem of non-local elasticity in terms of fractional differential operators. The non-local continuum is framed in the context of the mechanically based non-local elasticity established by the authors in a previous study; Non-local interactions are expressed in terms of central body forces depending on the relative displacement between non-adjacent volume elements as well as on the product of interacting volumes. The non-local, long-range interactions are assumed to be proportional to a power-law decaying function of the interaction distance. It is shown that, as far as an unbounded domain is considered, the elastic equilibrium proble…

Non-local elasticityCentral marchaud fractional derivativeComputer Networks and CommunicationsComputational MechanicsTime-scale calculusElasticity (physics)Non localFractional calculusLong-range interactionControl and Systems EngineeringCalculusFractional differentialSettore ICAR/08 - Scienza Delle CostruzioniFractional differential calculuFractional finite differenceMathematics
researchProduct

Long-range interactions in 1D heterogeneous solids with uncertainty

2013

Abstract In this paper, the authors aim to analyze the response of a one-dimensional non-local elastic solid with uncertain Young's modulus. The non-local effects are represented as long-range central body forces between non-adjacent volume elements. Following a non-probabilistic approach, the fluctuating elastic modulus of the material is modeled as an interval field. The analysis is conducted resorting to a novel formulation that confines the overestimation effect involved in interval models. Approximate closed-form expressions are derived for the bounds of the interval displacement field.

Body forceNon-local elasticityField (physics)non-local elasticity; long-range interactions; interval field; upper bound and lower bound.Mathematical analysisModulusGeneral MedicineInterval (mathematics)Upper and lower boundsLong-range interactionLong-range interactionsInterval field; Long-range interactions; Non-local elasticity; Upper bound and lower boundDisplacement fieldRange (statistics)Interval fieldUpper bound and lower boundSettore ICAR/08 - Scienza Delle CostruzioniElastic modulusMathematics
researchProduct

Finite element method for a nonlocal Timoshenko beam model

2014

A finite element method is presented for a nonlocal Timoshenko beam model recently proposed by the authors. The model relies on the key idea that nonlocal effects consist of long-range volume forces and moments exchanged by non-adjacent beam segments, which contribute to the equilibrium of a beam segment along with the classical local stress resultants. The long-range volume forces/moments are linearly depending on the product of the volumes of the interacting beam segments, and their relative motion measured in terms of the pure beam deformation modes, through appropriate attenuation functions governing the spatial decay of nonlocal effects. In this paper, the beam model is reformulated wi…

Timoshenko beam theoryFinite element methodApplied MathematicsGeneral EngineeringStiffnessPure deformation modeComputer Graphics and Computer-Aided DesignFinite element methodLong-range interactionClassical mechanicsVariational formulationBending stiffnessStress resultantsNonlocal Timoshenko beammedicineDirect stiffness methodmedicine.symptomAnalysisBeam (structure)Stiffness matrixMathematics
researchProduct

The finite element method for the mechanically-based model of non-local continuum

2011

In this paper the finite element method (FEM) for the mechanically based non-local elastic continuum model is proposed. In such a model each volume element of the domain is considered mutually interacting with the others, beside classical interactions involved by the Cauchy stress field, by means of central body forces that are monotonically decreasing with their inter-distance and proportional to the product of the interacting volume elements. The constitutive relations of the long-range interactions involve the product of the relative displacement of the centroids of volume elements by a proper, distance-decaying function, which accounts for the decrement of the long-range interactions as…

Long-range interactionIntegro-differential equationFinite element analysiNon-local mechanicNumerical methodsSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory

2009

In this paper the physically-based approach to non-local elasticity theory is introduced. It is formulated by reverting the continuum to an ensemble of interacting volume elements. Interactions between adjacent elements are classical contact forces while long-range interactions between non-adjacent elements are modelled as distance-decaying central body forces. The latter are proportional to the relative displacements rather than to the strain field as in the Eringen model and subsequent developments. At the limit the displacement field is found to be governed by an integro-differential equation, solved by a simple discretization procedure suggested by the underlying mechanical model itself…

Body forceNon-local elasticityDiscretizationField (physics)Mechanical EngineeringLinear elasticityConstitutive equationMathematical analysisCentral volume forceEquivalent mechanical modelThermodynamic consistencyContact forceLong-range interactionMechanics of MaterialsDisplacement fieldGeneral Materials ScienceBoundary value problemSettore ICAR/08 - Scienza Delle CostruzioniMathematicsJournal of Elasticity
researchProduct